Volume 3, Issue 1, March 2018, Page: 1-8
Nuclear Size Corrections to the Energy Levels of Single-Electron Atoms
Babak Nadiri Niri, Department of Physics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
Arash Anjami, Department of Physics Ardabil Branch, Islamic Azad University, Ardabil, Iran
Received: Feb. 22, 2018;       Accepted: Mar. 14, 2018;       Published: Apr. 8, 2018
DOI: 10.11648/j.ns.20180301.11      View  944      Downloads  47
Abstract
A study is made of nuclear size corrections to the energy levels of single-electron atoms for the ground state of hydrogen like atoms. We consider Fermi charge distribution to the nucleus and calculate atomic energy level shift due to the finite size of the nucleus in the context of perturbation theory. The exact relativistic correction based upon the available analytical calculations is compared to the result of first-order relativistic perturbation theory and the non-relativistic approximation. We find small discrepancies between our perturbative results and those obtained from exact relativistic calculation even for large nuclear charge number Z.
Keywords
Single-Electron Atoms, Relativistic Correction, First-Order Perturbation Theory, Nuclear Charge Number
To cite this article
Babak Nadiri Niri, Arash Anjami, Nuclear Size Corrections to the Energy Levels of Single-Electron Atoms, Nuclear Science. Vol. 3, No. 1, 2018, pp. 1-8. doi: 10.11648/j.ns.20180301.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
R. T. Deck, J. G. Amar and G. Fralick, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 2173-2186.
[2]
P. Jonsson and C. F. Fischer, Comput. Phys. Commun. 100 (1997) 81.
[3]
B. C. Tiburzi and B. R. Holstein, Am. J. Phys. 68 (2000) 640.
[4]
K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Konig and T. W. Hnsch, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 177.
[5]
J. L. Friar, J. Martorell and D. W. L. Sprung, Phys. Rev. A. 56 (1997) 4579.
[6]
A. Huber, Th. Udem, B. Gross, J. Rrichert, M. Kourogi, K. Pachucki, M. Weitz and T. W. Hnsch, Phys. Rev. Lett. 80 (1998) 468.
[7]
K. Pachucki, M. Weitz and T. W. Hnsch, Phys. Rev. A. 49 (1996) 2255.
[8]
W. Greiner "Relativistic Quantum Mechanics Wave Equations", Springer (1997).
[9]
V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii "Relativistic Quantum Theory" (Pergamon Press, Oxford, 1982).
[10]
W. R. Johnson and G. Soff, At. Data Nuc. Data Tables 33,405 (1985).
[11]
S. M. Wong," Introductory to Nuclear Physics", Credicted Intrnational Advanced Series, 2000.
[12]
K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia and E. P. Plummer, Comput. Phys. Commun. 55 (1989) 425.
Browse journals by subject