Volume 4, Issue 2, June 2019, Page: 11-22
Improved Numerical Generalization of the Bethe-Weizsäcker Mass Formula for Prediction the Isotope Nuclear Mass, the Mass Excess Including of Artificial Elements 119 and 120
Mavrodiev Strachimir Chterev, Department of the Theoretical Physics Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
Vol Alexander, Department of the Applied Physics, Hebrew University of Jerusalem, Jerusalem, Israel
Received: Jun. 5, 2019;       Accepted: Jul. 15, 2019;       Published: Jul. 26, 2019
DOI: 10.11648/j.ns.20190402.11      View  667      Downloads  94
George Gamow’s liquid drop model of the nucleus can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. Its semi-numerical equation was first formulated in 1935 by Weizsäcker and in 1936 Bethe [1, 2], and although refinements have been made to the coefficients over the years, the structure of the formula remains the same today. Their formula gives a good approximation for atomic masses and several other effects, but does not explain the appearance of magic numbers of protons and neutrons, and the extra binding-energy and measure of stability that are associated with these numbers of nucleons. Mavrodiev and Deliyergiyev [3] formalized the nuclear mass problem in the inverse problem framework. This approach allowed them to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. They formulated the inverse problem for the numerically generalized semi-empirical mass formula of Bethe and von Weizsäcker going step-by-step through the AME2012 [4] nuclear database. The resulting parameterization described the measured nuclear masses of 2564 isotopes with a maximal deviation of less than 2.6 MeV, starting from the number of protons and number of neutrons equal to 1. The unknown functions in the generalized mass formula was discovered in a step-by-step way using the modified procedure realized in the algorithms developed by Aleksandrov [5-7] to solve nonlinear systems of equations via the Gauss-Newton method. In the presented herein article we describe a further development of the obtained by [3] formula by including additional factors,- magic numbers of protons, neutrons and electrons. This inclusion is based the well-known experimental data on the chemically induced polarization of nuclei and the effect of such this polarization on the rate of isotope decay. It allowed taking into account resonant interaction of the spins of nuclei and electron shells. As a result the maximal deviation from the measured nuclear masses of less than 1.9 MeV was reached. This improvement allowed prediction of the nuclear characteristics of the artificial elements 119 and 120.
Bethe-Weizsäcker Mass Formula, Magic Numbers, Binding Energy, Wigner Term, Inverse Problem, Electrons-Nucleus Interaction, Chemical Polarization, Isotopes
To cite this article
Mavrodiev Strachimir Chterev, Vol Alexander, Improved Numerical Generalization of the Bethe-Weizsäcker Mass Formula for Prediction the Isotope Nuclear Mass, the Mass Excess Including of Artificial Elements 119 and 120, Nuclear Science. Vol. 4, No. 2, 2019, pp. 11-22. doi: 10.11648/j.ns.20190402.11
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Weizsäcker, C. F. von. Z. Phys. 96 (1935) 431.
Bethe, H. A. and Bacher, R. F. Rev. Mod. Phys. 8 (1936) 82.
S. C. Mavrodiev and M. A. Deliyergiyev, Modification of the Nuclear Landscape in the Inverse Problem Framework using the Generalized Bethe-Weizsäcker Mass Formula (2016), [arXiv: nucl-th/1602. 06777].
W. J. Huang et al., The AME2016 atomic mass evaluation (I). Evaluation of input data; And adjustment procedures, Chin. Phys. C41 (3) (2017) 030002.
L. Aleksandrov, Program AFXY (Analyze FX=Y) for Investigation of Nonlinear Systems, Private communications.
L. Aleksandrov, On Numerical Solution on Computer of the Nonlinear Ill-posed Problems, Comm. JINR P5-10366 (Dubna, 1977), [in Russian].
L. Aleksandrov, M. Drenska, D. Karadjov, Program code REGN (Code System for Solving Nonlinear Systems of Equations via the Gauss-Newton Method), RSIC-PSR-165, JINR 61-11-82-767 (Dubna, 1982). URL: https: //rsicc. ornl. gov/codes/psr/psr1/psr-165. html
G. T. Emery, Perturbation of Nuclear Decay Rates, Annual Review of Nuclear Science 22, pg 165 (1972).
D. Atanasov et al. Studies at the border between nuclear and atomic physics: Weak decays of highly charged ions. IOP Conf. Series: Journal of Physics: Conf. Series 875 (2017) 012008 doi: 10.1088/1742-6596/875/2/012008.
M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, B. Franzke, A. Gruber, P. Kienle, O. Klepper, W. Koenig, C. Kozhuharov, R. Mann, R. Moshammer, F. Nolden, U. Schaaf, G. Soff, P. Spädtke, M. Steck, Th. Stöhlker, and K. Sümmerer. (1992) First observation of bound-state β− decay. Phys. Rev. Lett. 69, 2164 – Published 12 October 1992.
F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, E. Wefers, K. Zeitelhack, K. Beckert, B. Franzke, O. Klepper, C. Kozhuharov, G. Menzel, R. Moshammer, F. Nolden, H. Reich, B. Schlitt, M. Steck, T. Stöhlker, T. Winkler, and K. Takahashi. (1996), Observation of Bound-State β− Decay of Fully Ionized 187Re: 187Re−187Os Cosmochronometry, Phys. Rev. Lett. 77, 5190 – Published 23 December 1996.
Yu. A Litvinov (Darmstadt, GSI & Giessen U. ), F. Bosch (Darmstadt, GSI), N. Winckler (Darmstadt, GSI & Giessen U. ), D. Boutin (Giessen U. ), H. G. Essel (Darmstadt, GSI), T. Faestermann (Stefan Meyer Inst. Subatomare Phys. ), H. Geissel (Darmstadt, GSI & Giessen U. ), S. Hess (Giessen U. ), P. Kienle (Stefan Meyer Inst. Subatomare Phys. & Michigan State U.), R. Knobel (Darmstadt, GSI & Giessen U. ) et al. 2008, Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140Pr and 142Pm Ions. Phys. Lett. B664 (2008).
Karpeshin F. F., Trzhaskovskaya M. B. Triggering the 178mHf isomer and resonance conversion: contemporary problems. www. kinr. kiev. ua/NPAE_Kyiv2008/proceedings//Karpeshin_289-292. pdf162-168 DOI: 10. 1016/j.physletb.2008.04.062.
Karpeshin F. F., Trzhaskovskaya M. B. Impact of the ionization of the atomic shell on the lifetime of the 229mTh isomer. J. Nuclear Physics A 969 (2018) 173–183. https://doi.org/10.1016/j. nuclphysa.2017. 0.0030375-9474.
Vol A. A. (2018) The Role of the Chemically Induced Polarization of Nuclei in Biology SPG, DOI: 10. 32392/biomed. 26.
M. A. Deliyergiyev, D. S. Vlasenko, Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission, Proceedings of the 4th Gamow International Conference on Astrophysics and Cosmology after Gamow and The 9th Gamow Summer School, Odessa, Ukraine, 17-23 August 2009, AIP Melville, New York, AIP Conf. Proc. 1206 (2009) 208-218; V. D. Rusov, S. Cht. Mavrodiev, M. A. Deliyergiyev, D. A. Vlasenko, In: “Quantum theory. Reconsideration of foundations” (New York, 2010) Vol. 1232, pp. 213-221.
S. Cht. Mavrodiev, and M. A. Deliyergiyev. 2017, Computation of the Binding Energies in the Inverse Problem Framework, DOI: 10. 1142/9789813226548_0050, Conference: C16-09-04. 6 (Exotic Nuclei, p. 330-337 (2017)), p. 330-337 Proceedings, https://arxiv.org/pdf/1708.07966. pdf
S. Cht. Mavrodiev1, M. A. Deliyergiyev, Decay Half-Life of Nuclei-Proton, Alpha, Cluster Decays and Spontaneous Fissions, NUCLEAR THEORY, Vol. 36 (2017) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia.
Cht. Mavrodiev, Numerical Generalization of Bethe- Weizsäcker Mass Formula, Proceedings of the 35-th International Workshop on Nuclear Theory (IWNT-35), Rila Mountains, 2016, Editors: M. Gaidarov and N. Minkov, Nuclear Theory, Vol. 35 (2016), ISSN 1313-2822.
S. Cht. Mavrodiev, Improved generalization of Bethe-Weizsäcker mass formula, Probl. Nonlin. An. Eng. Syst, Vol. 23 (2 (48)) (2017) 46–69 PNAES ISSN 1727-687 X.
Audi et al., The AME2012 atomic mass evaluation, Chin. Phys. C36 (2012) 1287.
Audi et al., The NUBASE2012 evaluation of nuclear properties, Chin. Phys. C36 (2012) 1157.
O.  B. Tarasov, Discovery of 60Ca and Implications for the Stability of 70Ca, Phys. Rev. Lett. 121, 022501 – Published 11 July 2018.
M. Gryzinski, Phys. Rev. 115 (1959) 374-383; Phys. Rev. 138 (1965) A322-A335; Chem. Phys. 62 (1975) 2610, 2620, 2629; Int. J. Theor. Phys. 26 (1987) 967980; http: //dx. doi. org/10. 1007/BF00670821; “On atom exactly: Seven lectures on the atomic physics”, ed. by M. M. Lavrentiev (Novosibirsk: IM SF RAS, (Ser. Conferences Library, No 1, 2004); http://www.gryzinski.com
N. G. Chetaev, Educational notes of Kazan University 91 book 4, Mathematics, N1, (1931) 3; Sci. Proc. Kazan Aircraft Inst. 1 (1936) 3; “The Stability of Motion” (Permagon, 1961); “Motion stability. Researches on the analytical mechanics” (Nauka, Moscow, 1962) (in Russian); Sov. Appl. Math. Mech. 24 (1960) 33; Sov. Appl. Math. Mech. 20 (1956) 309; Sov. Appl. Math. Mech. 23 (1959) 425.
Browse journals by subject